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Abstract

Magnetic Resonance Imaging (MRI) technique is a powerful diagnostic tool for medical diagnos-
tics. Conventional High-Field (HF) MRI systems of 1.5 to 3T offer high-resolution images with
low noise. Nonetheless, HF MRI systems are expensive, immobile, require complex infrastructure
and have high maintenance expenses, what makes MRI diagnostic inaccessible for most of the world
population. Recent developments in Ultra-Low-Field (ULF) MRI of less then 100 mT offer a com-
plementary cost-effective and portable solution for rapid screening and applications in emergency
conditions. However, ULF MRI systems provide significantly lowered Signal-to-Noise Ratio (SNR)
compared to conventional HF MRI systems.

Technical limitations of ULF MRI systems pose a challenge for the MRI reconstruction process
to provide an image quality suitable for diagnostic interpretation. Conventional reconstruction
techniques, suitable for HF MRI systems, do not always yield high-quality results for the ULF
MRI data. In the past decades, deep-learning based techniques became a widely used tool for data
processing tasks, including MRI reconstruction problem.

In this thesis, I present a novel approach of a complex-valued deep-learning model for ULF MRI
reconstruction, particularly for increase of resolution (super-resolution) and noise reduction (de-
notsing) problems. Different training schemes were examined to determine the model configuration
that achieved the best performance across image quality metrics. In parallel to the experiments
related to the complex-valued deep-learning model, a magnitude-only deep-learning model with an
analogous architecture was developed and employed as a reference for the complex-valued deep-
learning model.

Both of the complex-valued and magnitude-only deep-learning models demonstrated high and
very similar results of image quality metrics for super-resolution and denoising problems, yield-
ing an increase of median Structural Similarity Index Measure (SSIM) from approx. 69 % up to
approx. 90 %, median Peak Signal-to-Noise Ratio (PSNR) from 29dB up to 33dB, and reducing
median Mean-Square-Error (MSE) by factor of approx. 2.6 in comparison with the reconstruction
by inverse Fourier transform of raw data padded with zeros in k-space.

Furthermore, the developed complex-valued deep-learning model served as a foundation for the
physics-informed deep-learning model that combines the deep-learning approach with the underly-
ing physical model of ULF MRI acquisition process. Then, these models were challenged for both
fully sampled and accelerated measurements, yielding comparable results for the SSIM, PSNR and
MSE image quality metrics, with small performance gap of the magnitude-only deep-learning model
of less than 1.5 %.

Finally, the prepared reconstruction models, previously evaluated on the synthetic dataset, were
applied to the in vivo measurement acquired with a real-world ULF MRI scanner of 50 mT. The
complex-valued deep-learning model and the physics-informed model demonstrated an ability of
better noise suppression for fully sampled measurement, compared to the magnitude-only deep-
learning model.
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Zusammenfassung

Die Technik der Magnetresonanztomographie (MRT) entwickelte sich heutzutage zu einem leis-
tungsvollen Instrument der medizinischen Diagnose. Herkémmliche Hoch-Feld (HF) MRT Systeme
mit einer Magnetfeldstédrke in Héhe von 1,5 to 3T sind in der Lage, die hochaufgelosten Aufnah-
men mit geringem Rauschen aufzunehmen. Allerdings sind die HF MRT Systeme teuer, stationér,
erfordern eine komplexe Infrastruktur und auferlegen die hohen Betriebs- und Wartungskosten.
Infolgedessen bleibt das MRT Verfahren fiir den grofiten Teil der Weltbevolkerung unzugénglich.

Neue Entwicklungen im Bereich von Ultra Nieder Feld (ULF) MRI mit weniger als 100 mT
bieten eine komplementéare, kostenreduzierte und mobile Losung fiir rapide Untersuchungen und
Anwendungen bei Notfillen. Die ULF MRI Systeme liefern jedoch ein deutlich geringeres Signal zu
Rausch Verhéltnis (SNR) im Vergleich zu herkémmlichen HF MRI Systemen.

Technische Limitierungen von ULF MRI Systemen erschweren die direkten Erzeugung von aus-
sagekriftigen Aufnahmen. Ubliche Rekonstruktionsverfahren, die fiir HF MRI Systeme geeignet
sind, sind nicht immer gut anwendbar fiir die mit ULF MRI erzeugten Daten. In den letzten Jahr-
zehnten fanden die Deep Learning (DL) basierten Verfahren eine breite Anwendung in der Daten
Verarbeitung, auch fiir das MRT Rekonstruktion Problem.

In dieser Arbeit wurde der neuartige Ansatz eines komplexwertigen DL Modells fiir ULF MRI Re-
konstruktion préasentiert, insbesondere fiir die partikuldren Probleme von der Auflésungserhéhung
(Super-Resolution) und fir Rauschunterdriickung (Denoising). Mehrere Konfigurationen von DL
Modellen wurden getestet, um diejenige Konfiguration zu finden, welche die besten Ergebnisse fiir
die Bildqualitatsmetriken liefert. Das komplexwertige DL. Modell wurde mit einem Referenzmodell
vergleichbarer Architektur, das nur die Betragswerte beriicksichtigt, verglichen.

Die beiden DL Modelle demonstrierten hohe und sehr dhnliche Rekonstruktionsqualitdt bei
Super-Resolution und Denoising Problemen. Namlich wurde der Median von Structural Simila-
rity Index Measure (SSIM) Metrik von etwa 69 % auf etwa 90 % erhoht, sowie der Median von
Peak Signal to Noise Ratio (PSNR) von 29dB auf 33dB, und Reduktion des Medians von Me-
an Square Error (MSE) um etwa den Faktor 2,6 im Vergleich mit den Rohdaten, die durch die
Auffillung mit Nullen im k-Raum und inverse Fourier-Transformation rekonstruiert wurden.

Weiterhin diente das entwickelte komplexwertige DL Modell als Grundlage fiir ein physik-informiertes
DL Modell, das den DL Ansatz mit dem zugrunde liegenden physikalischen Modell des ULF MRI
Aufnahmeprozesses kombiniert. Diese Modelle wurden sowohl fiir Daten mit sowohl vollstandig,
als auch partiell abgetasteten Daten getestet. Beide Modelle lieferten vergleichbare Ergebnisse fiir
SSIM, PSNR und MSE Qualitdtsmetriken, mit einem kleinen Leistungsvorsprung des Betragswert-
basierten DL Modells von etwa 1,5 %.

Zuletzt wurden die entwickelten Modelle, die zuvor mit einem synthetischen Datensatz getestet
wurden, auf eine in vivo Messung mit einem realen ULF MRI Scanner mit 50 mT angewendet. Die
komplexwertigen und physik-informierten DL Modelle demonstrierten eine bessere Rauschunter-
driickung fiir die in vivo Aufnahmen im Vergleich zu Vorhersagen des Betragswert-basierten DL
Modells.
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1 Introduction

In the past decades Magnetic Resonance Imaging (MRI) became one of the most powerful and
often used non-invasive tools for medical diagnostics and clinical research. In Germany alone, as of
2022, the annual number of examinations using MRI scanners exceeded 13 million and has shown
steady growth through the past decade [1].

Unlike imaging techniques relying on the contrast caused by different transmission absorption
depending on the tissue density (as medical X-rays or computer tomography techniques), MRI
is based on Nuclear Magnetic Resonance (NMR) [2], where the temporal behaviour of collective
magnetisation strength signal is measured after an excitation.

The characteristics of the emitted signal strongly depend on the local environment of each nu-
cleus, such as the chemical compound it belongs to. By exploiting these differences with various
measurement techniques, NMR can distinguish between different types of tissues.

In the 1970, Paul Lauterbur [3] and Peter Masfield [4] conducted the first spatially resolved NMR
measurements, providing the foundation for the development of MRI technique. This work was
recognised with the Nobel Prize in Physiology or Medicine in 2003 [5]. Shortly after the pilot ex-
periments, the first commercially available MRI scanners became available for clinical applications.

Since then, MRI systems have evolved in terms of hardware and software design, offering a
well-established framework for routine diagnostic measurements, especially in brain diagnostics.

Despite their advantages, conventional MRI scanners are expensive, large-scale, stationary ma-
chines. They require complex infrastructure, including Radio Frequency (RF') shielded rooms, cryo-
genics for superconducting magnets and high-power power supply. The high costs of the machines
and their expensive maintenance restrain the pace of widespread adoption of MRI scanners [6],
resulting in access for only to approximately 10 % of the world’s population [7]. In addition, the
stationary nature of these systems often makes them inaccessible to critical patient groups, such as
those in emergency or intensive care, where mobility and rapid diagnostic screening are essential.

These challenges and limitations of conventional MRI scanners raised interest in alternative, more
accessible MRI scanners that maintain sufficient diagnostic capabilities while reducing hardware
complexity and cost. Among these, the development of Low-Field (LF) (static magnetic field
< 550mT) and Ultra-Low-Field (ULF) (static magnetic field < 100mT) MRI systems [8-12] is
gaining traction in past decades.

Although LF scanners already offer substantially lowered purchase prices (up to 50 %), reduced
associated installation expenses and maintenance costs (compared to a conventional 1.5T scanner
[13]), they still remain large stationary machines and unaffordable for many healthcare institutes.

The ULF systems are not intended to replace conventional and LF MRI scanners, but are designed
to complement them by serving in rapid mobile screening applications and providing access for vast
world’s population for significantly reduced price [14].

Parallel to hardware developments, the research field of MRI data reconstruction also made
progress, allowing to achieve a better reconstruction quality for the same set of acquired data, or
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reduce measurement data but maintain the reconstruction quality. Various reconstruction tech-
niques were proposed, driven by advances in computational methods and, more recently, by ma-
chine learning. Traditional reconstruction algorithms and numerical iterative techniques have been
complemented and, in some cases, outperformed by machine learning-based approaches.

Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs), as a particular
case of machine learning techniques, have demonstrated remarkable capabilities for image process-
ing. Research in this field was recognised with the Nobel Prize in Physics in 2024 [15]. CNNs haven
proven effective for such tasks as reduction of the data noise level (denoising) [16] and increase of
image resolution (super-resolution) [17] in many research fields. The MRI reconstruction problem
is not an exception and the machine learning techniques for reconstruction problems are widely
used in commercial MRI scanners and are approved for clinical use [18].

The novel concept of Physics-Informed Neural Networks (PINNs) [19], combining data-driven
machine learning and prior physical model of a physical process to improve generalisability and
stability of the model, was successfully used in MRI reconstruction problem [20, 21].

The advancements made by machine learning in MRI reconstruction problem are particularly
relevant for ULF MRI, where traditional reconstruction techniques struggle with low Signal-to-Noise
Ratio (SNR) of the measurement data. Machine learning embedded reconstruction algorithms were
successfully demonstrated [22-26] and an image reconstruction technology using Deep-Learning
(DL) received Food and Drug Administration (FDA) clearance in the US [27].

The potential of physics-informed DL reconstruction model for ULF MRI demonstrated promis-
ing results [28] in distortion correction and noise reduction problems. In the present thesis I
introduce a novel physics-informed DL reconstruction model for noise reduction and resolution
enhancement. In contrast to conventional models, leveraging only the magnitudes of MRI im-
age, the proposed method uses complex-valued data, allowing native integration of the underlying
physics acquisition model. In the present thesis I study and evaluate performance of the proposed
novel model for the noise reduction and resolution enhancement problem for the full and reduced
measurement data, compared with alternative state-of-the-art solutions.

In Chapter 2 a general overview of the basics of MRI working principle, data acquisition, re-
construction problem are given. In addition the general principles of application of DL models are
introduced. In Chapter 3, establishment of the framework for experiments including the formation
of the experimental dataset for ULF from the publicly available dataset of 3T, development of the
DL model and reconstruction performance evaluation is described. In Chapter 4 the previously
developed DL reconstruction model is extended to physics-informed model and its performance is
evaluated. Then, the performance of the developed models is compared depending on the quality
of input data. In the final Chapter 5 application of the previously developed reconstruction models
is evaluated for the data measurements acquired with the real-world ULF MRI scanner.

The software source code used for the experiments, as well as the IATEX source code of this
document, are provided in the dedicated GitHub repository™.

The multimodal large language model GPT-5 developed by OpenAl was used to support writing
and providing tips for stylistic formulation of certain text passages.

*https://github.com/lrlunin/ptb-master-thesis-full
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2 Theory

In the first step, the theory of underlying physical concepts of Magnetic Resonance Imaging (MRI)
will be discussed in a semi-classical picture, omitting the exact quantum mechanical description.
This part is based on [29-31]. The reader can refer to [32] for a very brief overview of the concepts
involved in the working principle of an MRI scanner.

Then, the mathematical problem of the MRI reconstruction as an inverse problem of acquisition
will be formulated. Furthermore, introduction into a concept of Deep-Learning (DL) technique and
its role in the inverse reconstruction problem is explained. And finally, the particular challenges of
Ultra-Low-Field (ULF) MRI are discussed.

2.1 Acquisition principle of MRI

MRI technique exploits the fundamental effect of Nuclear Magnetic Resonance (NMR), interaction
of a nuclei with electromagnetic radiation in an external magnetic field. In medical imaging,
MRI primarily relies on hydrogen atoms because of their high prevalence in the human body.
Spatially resolved imaging is performed by special sequences of temporary synchronized application
of external magnetic field and of electromagnetic radiation pulses.

In the present Section, the time dynamics of isolated nucleus spin in the external magnetic field
is derived. Afterwards, a macroscopic picture of dynamics of many spins is considered. Finally,
main principles of spatially resolved imaging measurements are introduced.

2.1.1 Microscopic spin dynamics in static magnetic field

Magnetic moment of a nucleus with angular momentum J and gyromagnetic ratio ~ yields

p=9J (2.1)

Temporal dynamics of magnetic momentum g in static magnetic field B is described by the fol-
lowing differential equation:

o _ Yu x B, (2.2)

In a three-dimensional space with a Cartesian coordinate system defined by set of unit vectors e,
e, and e in the presence of uniform magnetic field along the z-axis B = Be., Equation 2.2 can
be reformulated as a system of three scalar differential equations:

fto(t) = vpy(t)B
fry(t) = —vpa()B (2.3)
frz(t) =0
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The equation system yields a general case solution with substitution wg = vB (Larmor frequency)
and given initial conditions for p,(t = 0), p,(t = 0) and p.(t = 0):

o
SN—
wn
=
=]
—
S

(=)
~~
S~—

alt) = pe(0) cos(int) + iy
py(t) = py(0) cos(wot) + 14(0) sin(wot) (2.4)

This represents an angular motion around the z-axis with a constant angular velocity wg linearly
proportional to the magnetic field amplitude B.

Figure 1: Precession of the magnetic moment g in the external field By.

2.1.2 Macroscopic spin dynamics and relaxation concepts

A very common concept for simplification of mathematical description in NMR and MRI is a
rotating reference frame (rotating frame), where the precessing nucleus appears stationary. From
now on the magnetisation dynamics is observed in rotating frame with angular velocity matching
the Larmor frequency.

Assuming a large number of nuclei within volume V', the net magnetisation M can be expressed
as follows

M= S (2.5)

With assumption that all the nuclei have the same phase of motion and neglecting the mutual
interaction, the collective magnetisation dynamics in presence of static magnetic field By can be
derived by summing the equations of motion for an isolated nucleus, given in Equation 2.2:

1 dp;
v = e x By (2.6)

or equivalently
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Net magnetisation M can be decomposed into transversal M and longitudinal M| components

{MJ_ = M e, + Mye, (2.8)

M” = Mzez
According to Equation 2.7 the time derivatives of transversal and longitudinal components yield

dM |

=vM B
di Yy X Dy (29)
dt

Potential energy Ujs associated with net magnetisation M in presence of magnetic field By is
Uy=—-M- -By=—-M,Bg (2.10)

and is dependent only on the longitudinal component M, of net magnetisation. With good agree-
ment of Curie’s law for uB/kT < 0 at normal human body temperature of approx. 310K, the
equilibrium longitudinal magnetisation My can be approximated as

(2.11)

with C being a material-specific constant. In case of short-term perturbation of nuclei by Radio
Frequency (RF) pulse, the equilibrium state is firstly disturbed with consequent recovery to its
equilibrium state due to the energy dissipation to the environment. With a two-state model of the
proton spins, the dynamics of the longitudinal component can be approximated as

dM, 1

= (M- M) (2.12)

with a T} being a tissue-specific experimental ”“spin-lattice relaxation time”, yielding a solution for
M, (t) with a given initial condition M(0):

M. (t) = M,(0)e /"t + My(1 — e7/T1) (2.13)

The dynamics of the transversal component of net magnetisation M| is dominantly characterised
by the coherence of individual spin precessions. High degree of phase coherency of their individual
transversal components sum up constructively and result a strong transversal net magnetisation.
As the collective motion of individual spins dephases over time, the net transversal magnetisation
decays.

With introduction of a characteristic ”spin-spin relaxation time” T5, the differential equation for
transversal net magnetisation component M| is given as

dM |
dt

1
=7M, x By— —M, (2.14)
T

and has the following solution with given initial condition M (0)

M (t) = M, (0)e /T2 (2.15)
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Final differential equation for the dynamics of net magnetisation M comes up from dynamics
of longitudinal and transversal components, derived in Equations 2.12 and 2.14, and called Bloch

equation:

dM 1
— =M x B —(My— M —M 2.16
dt Y X o+ Tl( 0 z)ez TQ 1 ( )

The T7 and T» relaxation times vary across different tissues, being an origin of contrast in MRI.
Special sequences of synchronised RF excitation pulses and magnetisation measurements can be
employed for estimation of relaxation times. In the next subsection the concept of spatially resolved
measurements of the relaxation times is introduced.

2.1.3 Spatially resolved acquisition principle

The key principle of spatially resolved acquisition in MRI is the controlled perturbation of the ex-
ternal magnetic field By in space, such that the measured magnetisation signal over the acquisition
time allows to unambiguously assign the relaxation time to a dedicated area in three-dimensional
space.

Typically, linearly increasing magnetic fields (gradient fields) along the z, y and z spatial axes
are applied. The variation of an external magnetic field directly affects the resonance frequency of
a proton spin which allows to encode a spin position through variation of its resonant frequency
(frequency encoding). Gradient field can be applied in combination with a frequency-selective RF
pulse in order to excite a specific slice only (slice selection gradient) or whilst the signal acquisition
step (readout gradient). Other axis can be encoded via a temporal application of the linear gradient
field which induces a phase shift along a specific axis (phase encoding).

A special temporally arranged series of alternating gradient fields along specific axes, variation
of gradient field strength, application of RF excitation pulses, and measurements of magnetisation
signal is called an MRI sequence. One particular MRI sequence is chosen depending on the target
of medical examination, the examined body part, available measurement duration, and scanner
capabilities.

Data acquired throughout the MRI measurement sequence, encoded via frequency and phase,
can be represented as a set of complex-valued data points in k-space. The measurement sequence
defines the amount of data points and their position in k-space, often called a k-space trajectory.
In the present work the sampling in the Cartesian grid in three-dimensional k-space is considered.

For a three-dimensional acquisition of a spatially resolved quantity p(z,y, z), the MRI measured
signal s can be formulated as follows

sty ke) = [ [ [ ol z)em2mer bt dudydz = Flp(a,y, )] (2.17)

with F being a Fourier transform.

And for a real-world measurement with finite number of acquisition steps N, M, L along each of
z, y and z dimensions and a finite Field Of View (FOV)

N/2—1 M/2-1 Lj2-1

Slha by k) = D0 D 3 pla,y, z)e  rARAmARHIAR) — Flp(py,2)],  (2.18)
n=—N/2m=—M/21=—L/2

with F' being a Discrete Fourier Transform (DFT) and Ak; being a reciprocal of FOV; along the
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axis i € {z,y, z}.

And, consequently, for the reconstruction I of the p from the measured s(ky, ky, k.) an inverse
Fourier transform F~! can be applied.

I(z,y,2) = F_l[s(k:x, ky, k)| =~ p(x,y, z) (2.19)

Typically, a single acquisition measurement samples a complete line (this dimension called a
readout direction) of data points in k-space rather than a single data point.

Acquisition time t

v

Figure 2: Sampling in Cartesian three-dimensional k-space of shape N x M x L pxg. The x-axis corresponds to
the readout direction. The FOV-limited volume is sampled line by line throughout the acquisition.

Since the measurement time for each line along the readout dimension is fixed, the overall duration
of an acquisition is limited by the number of lines sampled in the three-dimensional space and can
only be accelerated by reducing the number of sampling lines in the space.

| F(m))|

N
0.00 025 050 0.75  1.00 00 01 02 03 04

Figure 3: Sample slice of the brain (left) and its DFT (right). The signal intensity in the central part of the
k-space is the highest and decreases toward the periphery region.

The distribution of the signal strength for an anatomical structure is highly non-uniform across
the k-space. For example magnitudes of a brain acquisition |m| and corresponding Fourier Trans-
form |F(m)|, shown in Figure 3, demonstrate that the most intense signal amplitude is localised
in the central area of k-space and declines towards the periphery.

Spatial distribution of the signal in k-space is directly related to the spatial information of
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acquisition content. Lower spatial frequencies, closer to the centre of k-space, correspond to larger
features in image domain and encode the global image contrast and coarse structures. Higher
spatial frequencies, lying far from the centre of k-space, correspond to fine structural details and
sharper image.

Measurement in MRI is accompanied with the noise arising both from the specimen, receiver
coils and electronical hardware. This noise is generally assumed to be normally distributed and
frequency-independent [33] in real and imaginary parts of the measured data. This means that
the higher frequency signal of lower strength naturally has lower Signal-to-Noise Ratio (SNR), and
depending on the ration of the measurement signal to the noise amplitude (especially in the ULF
MRI) measurement of higher frequencies can be very complicated.

Different strategies for the choice of k-space trajectory are present. Especially, for the acceleration
of the measurement via reducing amount of sampled data values without a significant loss in
acquisition quality and resolution is a common problem.

For example, common approaches are the trajectories with higher density of the sampled data
values in the k-space centre (for example with density proportional to the Gaussian distribution),
or Partial Fourier (PF) sampling where as little as one-half of k-space is sampled, exploiting rather
slow natural phase change in the MRI acquisitions and conjugate symmetry of k-space.

2.1.4 Single- and multi-coil acquisitions

In MRI, data can be acquired using a single RF coil or an array of multiple coils. Single-coil
acquisitions are conceptually straightforward. Application of multiple coils has become the standard
in modern MRI systems due to the improved SNR and the possibility of accelerated parallel imaging.

In multi-coil acquisitions, each coil receives the measurement RF signal but have varying sensi-
tivity profiles, meaning that the measured signal from each coil is modulated by its corresponding
coil sensitivity. Consequently, the reconstruction of a single image from multi-coil data requires
Coil Sensitivity Maps (CSMs), which characterises the signal response of each coil.

The CSMs are often determined with special calibration sequences before the actual examination
but can be evaluated on the basis of the acquired k-space data. There are numerical algorithms
designed for the CSM reconstruction. The most commonly used algorithms are Inati [34], Walsh [35]
and ESPIRIT [36].

For k-space data acquired with n coils, vector m” of length n denotes the measurement data and
vector ¢ being the known vector CSMs with the same length n. The corresponding complex-valued
image 4 can then be reconstructed as

u

1 -,
= el Y ;- F(m}), (2.20)
=1

with ¢* being a complex conjugate of ¢ and ||-||2 being a L?*-norm.

2.2 General reconstruction problem

The forward problem of a MRI acquisition can be posed as follows

m" = Augye + 1, (2.21)
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where A being an acquisition model operator, ui e being the unknown original data, n being a
statistical noise and m” being the k-space data acquired with the measurement.

In general, this problem ill-posed inverse problem which is not exactly solvable for the wiyue
due to unknown noise m. Therefore, the problem is often reformulated to maximise likelihood
estimation of m* and w which leads to the least-squares problem for u:

’ 2.22
g (2.22)

up = arg min HA’U, — mk‘
u

where |-||, being the L*-norm.

The minima is determined by setting the derivative of the functional on the right-hand side in
respect to u to zero:

0
w20

(2.23)
= AT (Au —m") = A Au — AlmF =0
with A” being an adjoint operator to an operator A.
This gives the following equation for the unknown wug
A Aug = AHmk (2.24)
and has the following general form solution
ug = (AT A) L AEmF (2.25)

The general Equation 2.22 can be extended with the so-called regularisation term R(u) to in-
corporate prior knowledge properties about the w.

up = arg min {; HAu — mkHz + ;\R(u)} , (2.26)

with A being a non-negative scalar value. The value A acts as a weighting of regularisation term’s
impact in respect to the first term, often called data consistency term. Choice of the regularisation
term is strongly dependent from the reconstruction problem statement. Often used are the Total
Variation (TV) [37, 38], wavelet transformation [39], or an externally predicted prior (for example,
prediction of a DL model) [40-42].

Regularisation term R(u) defined by an externally predicted solution u, is posed as follows:
2
R(u) = [lu— w3 (2.27)
For this particular form of regularisation term, solution for Equation 2.26 becomes
0 1 k 2 A 2
s (2 P S uT||2) ~0

= AT (Au —mP) + ANu —u,) = ATAu — ATmF 1+ \u — I, (2.28)
= (A¥A 4+ \Du — ATm> — \u, =0
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and yields the following Equation for the unknown u
(AT A+ ADu = ATm"* + \u, (2.29)

This equation is consistent with Equation 2.24 and reduces to the same form when the regularisation
weight A = 0.

The equation for u in form of Wu = ¢ can generally be solved numerically, for instance using
the conjugate gradient method, while depending on the operator A, a closed-form solution for u
may exist.

2.3 Deep-Learning model

2.3.1 Artificial neural network

An Artificial Neural Network (ANN) consists of a sequential composition of multiple functional
elements (layers). The first (top) and last (bottom) layers are called input and output layers,
respectively.

Input layer Hidden layers

Input 1

Figure 4: Schematic representation of an trivial ANN with input layer as vector of length n inputs and output
layer as vector of length k.

An input and output of a layer can be a tensor of an arbitrary shape. Each layer represents a
mathematical operation and can have a set of variables w (learnable parameters or hyperparame-
ters). The connection between layers can be direct or passed through a special function (activation
function) to introduce a non-linear response of the network. Then, a defined sequence of various
layers and activation functions is called model.

Training of a model is the process of modification of learnable parameters to minimise the value of
a function £ called loss function. In case of supervised learning the loss function E(gj(i), y(i)) takes
the return value of the output layer 9@ = M (z); w) and a corresponding Ground Truth (GT) 3y
as arguments. A set of pairs D = {(m(i),y(i))fil} of input data 2 and a corresponding GT ¢ of
length N is called a dataset.

The supervised learning training procedure can be formulated as an iterative algorithm as shown
in Algorithm 1.
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Algorithm 1 Supervised Learning Algorithm for an ANN

Require: Model M, Loss function £, Training data D = {(2,y®)}Y | Parameters state w,
Batch size B, Learning rate 1, Number of epochs F
1: for epoch = 1 to F do
2: for each training batch {(z™,y™)}E_, ¢ D do
3: Forward pass: Compute predictions {§™}2_, :— M({z™}B_;w)
B

4: Compute loss: L :— ZL’(@("),y(n))

5 Backward pass: Com?)ute gradients VL
6 Update parameters: w < w —1n- VL
7 end for
8: end for

The prediction @(i) of a trained model M with parameter state w is obtained following the trivial
algorithm:

Algorithm 2 Supervised learned model prediction
Require: Model M, Parameters state w

1: Input: 2

2. Predict: 9 :— M(z;w)

3: return gj(i)

With a training algorithm as a problem of searching local minima of the loss function in a
multidimensional space, often a gradient descent method is applied, with a learning rate as a ratio
for a step size in approaching of the local minima. Setting to the learning rate to high would not
allow to approach local minima by bouncing back and forth, while a too small learning rate set
would consume too much time.

Number of steps (epochs) for optimization of model parameters w is a trade-off between the
training duration and proximity to the model local minima. The exact choice of the number of
epochs depends on the model size and learning rate. Typically, an abrupt decay of the loss function
at the preliminary training steps and very slow asymptotically approaching the local minima is
observed.

In order to stabilise the approach to the local minima in the trainable parameters steps and
allow the model to deliver a more generalised result among the training data, model parameters
optimization is performed not for a single pair of the data, but for a set of training data pairs
(batch) of length B (batch size), being a subset of of dataset D.

A common issue for the large models is the case when instead of generalization of the problem,
the large model can be unintentionally optimized in a way to memorize all outcomes for the pairs
in training dataset. To prevent a model to "memorize” all expected outcomes (overfit) for each of
training input and ground truth pair, training is performed for two different training and evaluation
datasets. Evaluation of a trained model efficiency is performed with the third test dataset consisting
of the pairs which have never appeared in the training phase for the given model.
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2.3.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) represent a special class of ANNs that predominantly
consists of multiple convolutional layers composed of kernels of various shapes, with values of
the kernels being trainable parameters. Modification of kernel values allows to extract relevant
structural features of an input. Moreover, consequent connection of convolution layers allows to
increase the complexity of the extracted features based on output of previous layers and propagate
them throughout the model.

CNNs gained their popularity in the past decades and became a common approach for computer
vision and image processing problems and for inverse problems, as MRI reconstruction as well [43].

Common applications of CNNs in context of MRI reconstruction problem are points, outlined
in the previous Chapter, such as: suppression of the statistical noise (denoising), recovery of
higher resolved data with the lower resolved measurement (super-resolution), and reconstruction of
accelerated measurements partially sampled in k-space (undersampling).

Among other subclasses of CNNs, the Residual Channel Attention Network (RCAN) model
[44] and its slightly modified model [24], successfully applied and demonstrated good results in
benchmarks for the denoising and super-resolution problems of the three-dimensional ULF MRI
brain acquisitions, as well as of undersampled acquisition.

The model consists of the cascade of the Residual Groups (RGs) with modified Residual Channel
Attention Blocks (mRCABs), then concatenated with the mRCABs as shown in Figure 5 RG and
Channel Attention (CA) blocks, which

:(Trilinear interpolation)

S D B ] > v
L g %_’ RGsw/ | » mRCABs —> RGs w/ - Sub-pixel g 9_’
O E attention

mRCABs mRCABs conv (@)
v
RGs w/ mRCAB
mRCABs g EUHCAES —» Strided convolution + leaky ReLU
) ; B E Téé Trilinear interpolation
Rf({}CSAWP{ 8 é 8 = E"e" - Skip connection 4+ concatenation
= > | Bl S5 @® Voxel-wise addition

Figure 5: Schematic representation of the RCAN model architecture published in [24].

Due to the similarity of the tasks expected for the model performance, this model was taken as
a basis for the model proposed in the next section.

2.3.3 Complex valued network approach

In most applications of machine learning models to MRI reconstruction, CNNs act in the magni-
tudes image domain. This is dominantly motivated by the fact that the magnitude images are only
relevant for clinical diagnostics.

However, this approach neglects the complex-valued nature of the MRI signal, where both real
and imaginary components carry physical information. An approach of fully complex-valued neural
networks, where both complex-valued trainable parameters w and input data are represented as
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complex values, was demonstrated earlier [45] but did not become common in the research field
due to the mathematical and computational complexity.

Nevertheless, only a limited set of applications [46] or retrieval of the By field would require the
complex-valued signal. This would also be essential for the consistency with the MRI reconstruction
problem and acquisition operator (see Equation 2.29) for the development of physics-informed
model. In addition, even when the model is developed to deliver better results for magnitude images,
the model may still benefit from the complex-valued input, since the complex-valued information
can provide more signal-related constraints.

In the present work the complex valued network was implemented by the representation of
imaginary and real part as two independent real-valued channels in a similar way as a digital
colour image is represented in three (red, green and blue) channels.

The naive implementation of the complex-valued network with the complex-valued trainable
parameters, complex-valued inputs, and special complex-valued activation functions did not work
as intended and did not allow the network to converge over the training steps to deliver sensible
results.

Since real and imaginary channels are not restricted to positive values only, as magnitudes do,
the activation functions of the original network above were exchanged with the odd activation
functions to achieve symmetric behaviour with respect to zero.

Another possible approach is to represent the complex values as two separate channels of magni-
tudes and the phase portrait. However, this representation makes the channels to have completely
different meaning, which would make less sense to process them through a single model.

2.4 Challenges of low-field MRI system

The MRI systems can be divided into groups by the strength of the magnetic field By in the Low-
Field (LF) (less then 1.5T), High-Field (HF) (1.5 to 3T) and Ultra-High-Field (UHF) (7T and
above). Under the LF systems special group under 50 mT can be considered as ULF system.

The ULF MRI systems are not intended to compete to LF or HF MRI systems and serving a
complementary role making MRI accessible for world population, rapid screening, for example as
brain examination, and portable. These goals also impose limits on the hardware equipment what
affects the acquisition SNR.

In this work I would focus on the in-house developed open-source OSI? ONE prototype ULF MRI
system [47] with By strength of 50 mT.
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Figure 6: Photo of (left) assembled the OSI> ONE MRI system and (right) stand-alone Halbach array magnet
chamber.

Main challenge of the ULF MRI system is significantly lower acquisition SNR, compared to
conventional HF MRI, due to the orders of magnitudes weaker By field. In order to ensure sufficient
SNR within a clinically feasible acquisition time, the spatial resolution of the ULF MRI is much
lower than conventional scanners have.

In context of the present thesis, absence of the large dataset acquired with the ULF MRI is most
challenging. Often DL models are trained with a dataset of paired ULF and HF MRI acquisi-
tions [48]. This is not the case for the OSI*> ONE scanner due to multiple reasons, such as current
lack of clearance for patient use and insufficient time for dataset collection.



3 Image-base super-resolution and denoising

3.1 Introduction

The Ultra-Low-Field (ULF) in-house developed Magnetic Resonance Imaging (MRI) system [12]
aims to make the MRI diagnostic tool mobile, accessible, and affordable. However, such systems
are not able to compete with large-scale machines in terms of Signal-to-Noise Ratio (SNR) due to
numerous hardware limitations such as a much weaker static magnetic field.

Thus, in order to achieve an acquisition quality for diagnostic interpretation, there is a trade-off
between acquisition SNR, scan duration, and spatial resolution. Provided that the scan duration
is limited by natural factors and the ULF MRI project aims for rapid screening application with
a total acquisition time of approximately ten minutes, an increase in acquisition SNR under fixed
scan duration is achievable only with a reduced acquisition resolution.

Convolutional Neural Networks (CNNs) has already demonstrated capable for mitigation of the
noise and increasing resolution for the MRI reconstruction problem especially for Low-Field (LF)
and ULF MRI systems [22-26]. The proposed Deep-Learning (DL) models predict an output
with increased resolution (super-resolution) and reduced noise (denoising). The models act in the
magnitudes domain, assigning a high-resolution, low-noise magnitude image to a low-resolution
magnitude image with a lower SNR.

A novel approach, which I propose in this Chapter, is an Residual Channel Attention Net-
work (RCAN) DL model, acting in the complex-valued domain. The developed model predicts a
complex-valued image with higher spatial resolution and reduced noise for a complex-valued MRI
image input. The main motivation for developing a complex-valued model are potential benefits
of exploiting additional phase information, missing in the conventional magnitudes domain ap-
proaches, for better super-resolution and denoising tasks, as well as being an intermediate step in
development of a physics-informed model framework, where the complex-valued data is essential.
Also, a complex-valued MRI denoised image is required for applications which are particularly
relevant for an ULF MRI, as estimation of By field inhomogeneities [28].

The development of the complex-valued model requires preparation of a training dataset, com-
posed of paired low-resolution, low SNR and high-resolution, high SNR complex-valued images. Due
to the absence of large publicly available datasets of ULF MRI acquisitions, two complex-valued
training datasets were prepared. The datasets are based on the publicly available fastMRI [49]
dataset of High-Field (HF) MRI acquisitions, but had two completely different approaches for
generation of phase information.

As part of the experiment described in this Chapter, various configurations of the complex-valued
model were evaluated to determine the model, which achieves the best performance in terms of
image quality metrics for the models’ predictions. The models are also examined against a baseline
reconstruction and the reference model of a similar architecture, which acts in the magnitudes
domain only.

15
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3.2 Methods

3.2.1 Deep-Learning models implementation

A DL model for the experiments was intended to match RCAN-like architecture, proposed in [24].
The model was implemented in PyTorch [50] framework™ and was designed to have adjustable
configuration for input and output shapes, including spatial dimensions and amount of channels.

The magnitudes DL model represents a particular case of this basic model with a single input
and output channel and is referred to as RCANg. The complex-valued DL model uses an identical
configuration, except with two input and output channels, and is denoted as RCANc.

3.2.2 Training dataset preparation

For supervised learning of a model (Algorithm 1) pairs of inputs and Ground Truth (GT) data
(:U(i),y(i)) are required. Application of the data measured with the ULF system is not possible
since the fundamental GT cannot be recovered by measurement. Often used pairs of the ULF and
HF MRI paired acquisitions also not publicly available and cannot be acquired for project dedicated
time. Currently, the ULF MRI prototype at PTB is not cleared for patient use.

Therefore, the experimental dataset bases on the publicly available fastMRI [49] dataset consist-
ing of 2526 T, weighted brain acquisitions obtained with commercial 3T scanners in high resolution
with the noise level far below the noise level of ULF MRI. The brain acquisitions are available as
both fully sampled Cartesian multi-coil k-space raw data and the corresponding magnitude images
obtained by the vendor reconstruction. The Ty weighted acquisitions are considered since the 15
weighted contrast is less influenced by the strength of By and therefore can be better transferred
to ULF MRI.

Reconstructed ground truth dataset D4,

Since no Coil Sensitivity Maps (CSMs) are provided within the fastMRI dataset, the CSMs are
calculated with implementation of Walsh algorithm from the MRpro software package [51] based
on the multi-coil k-space data of the acquisitions.

Then, composed complex-valued acquisitions were reconstructed according to Equation 2.20 with

the both of CSMs.

The complex-valued images reconstructed with the CSMs, provided by Inati algorithm, were
dominantly real-valued with a much lower imaginary part of the recovered complex-valued acqui-
sition, which can be explained by design of the Inati algorithm.

The goal of preparing a dataset from k-space data is to obtain complex images that are most
similar to the acquisitions made with the ULF MRI system. Thus, the CSMs retrieved with Inati
algorithm were not used for training. The dataset of complex-valued reconstruction retrieved with
Walsh algorithm estimated CSMs indicated a much more similar phase portrait to the acquisitions
made with the original ULF MRI system and was used for experiments.

Then, the complex-valued three-dimensional acquisitions were scaled to the shape of 16 x200x 240
via the nearest-neighbour interpolation algorithm and represent the GT y(z) of the D,qisn dataset.

*model implementation available at https://github.com/lrlunin/high-res-low-field-mri
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Simulated ground truth dataset D,

The second dataset Dyg;,,, was prepared using the vendor reconstructed magnitude images y provided
in the fastMRI dataset and the simulated phase component . Firstly, the magnitude images were
scaled to the identical shape of 16 x 200 x 240 via the nearest-neighbour interpolation algorithm
and normalised from 0 to 1 as follows:

y — min(y)
max(y) — min(y)

Y= (3.1)
The phase component ¢ was simulated as a linear slope in z-y plane of a three-dimensional space,
exceeding mrad in the centre of the image, accompanied with a slow linear increase of phase angle
along the z-axis. Orientation of a phase front in z-y plane was chosen randomly in range of 0 to 360°
for each of GT data y(l) in the dataset. The global phase shift was chosen randomly in range of

—g to + grad for each of GT data y(i) in the dataset.

Then, complex-valued GT data y(i) was obtained by element-wise multiplication of the magnitude
data ¢ with the phase component :

yl(;;g _ gijkei@ijk (3.2)

Simulation of ULF MRI acquisitions

For the simulation of data acquired with the ULF MRI, which represent the model input x(i), the
following chain of operators was applied to the GT data y(’) of both D45 and Dy, datasets:

+® = F-YDFy® 1+ N(0,02)), (3:3)

with D : C16%200x240 _, ¢16x100x120 35 1 shace downsampling operator, sampling only the central
part of k-space and o2 randomly selected in range of 0.03 to 0.06 to simulate the acquisition noise
of ULF MRI. Randomness of the noise variance over the acquisition series should prevent the model

to eliminate only the one specific level of noise.

Magnitudes dataset D,,,q
For the experiments with the model acting in the magnitudes domain, dataset consisting of acqui-
sition magnitudes, further denoted as D,,,4, Was constructed.

To ensure consistency with previously prepared complex-valued datasets, the input and GT pairs
{29,y D)} of the dataset Dynqg are calculated as magnitudes of input |#¥| and GT |y pairs of
the Dy;,, dataset.

3.2.3 Super-resolution and denoising problem

Training of the models was performed as supervised learning (Algorithm 1). The complex-valued
model, further denoted as RCANg, was trained on both D45, and Dy, datasets, with two different
loss functions L. and L.

The first loss function L. is the difference of imaginary and real channels of the prediction ﬁ(i)
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and corresponding GT data y(i)
L@,y %) = [R@GY) = R +1307) - D)), (3.4)

with R(-) and J(-) being the real and imaginary components of the complex-valued data. This loss
function sets the training objective as the minimisation of difference between individual real and
imaginary parts of complex-valued data.

The second loss function L, is the difference of the magnitudes of the prediction ﬁ(i) and corre-
sponding GT data y

Lon@D,yD) = ||| = |y@]| = WW(@@) +32(50) — \/R2(yD) + 32y ) (3.5)

This loss function sets the training objective as the minimisation of difference between the magni-
tudes, resulting from the real and imaginary parts of complex-valued data. This objective, however,
does not imply the minimal difference between of real and imaginary components.

The reference DL model, acting in the magnitudes domain, further denoted as RCANR, is trained
on dataset Dy,qy with the loss function

setting the training objective as the minimisation of difference between the magnitudes.

3.3 Experiments

3.3.1 Super-resolution and denoising problem
Model configurations

Each of prepared datasets Dyqish; Dsim and Dp,qq of 2526 data pairs (x(i) , y(i)) are split in three sub-
datasets of pairs: training, validation and test datasets, each having 1768, 506 and 252 data pairs,
respectively. The RCAN¢ and RCANg models had a comparable number of trainable parameters
of 3778970 and 3776809. The learning rate for training for all models is set to 1 x 1074, batch
size is set to 8, optimiser is AdamW, and number of training epochs is set to 120. Training was
performed on a single NVIDIA A100 GPU and lasted approximately 5 hours for each model to
train.

In total, 5 models were trained. Four complex-valued models RCAN¢ were trained by evaluat-
ing all combinations of two datasets {Dsim, Duwash} and two loss functions {L., £,,}. The one
magnitude model RCANR was trained on D,,,, dataset and with £; loss function.

As a baseline reference, the magnitudes of inverse Fourier transform of zero-padded input @ in
k-space, further denoted as ”zero-pad baseline”, were taken.

Model performance benchmark

For performance evaluation of trained models, the image quality metrics are applied to the pairs of
prediction and GT (5%, 2) of the test sub-datasets. The following metrics are used: Structural
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Similarity Index Measure (SSIM) with three-dimensional cubic Gaussian kernels of 3 x 3 x 3 px>,
Mean-Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR).

For the complex-valued models RCAN¢, the metrics were evaluated for both individual real and
imaginary channels, and the resulting magnitudes. For the magnitude model RCANg, only the
metrics for magnitudes were evaluated.

In each z—y slice, an area of brain region is comparable to that of the background. This imbalance
between the brain and background regions is particularly pronounced in the upper slices along the
Z-axis.

Thus, an application of the metrics to the whole volume, with each of voxel contributing equally
to the general score of a metric, would be unintentionally biased towards the background similarity
and do not represent a brain structure similarity but the averaged of both brain and background
similarity.

In order to establish a better benchmark, set of rectangular binary masks enclosing the brain
region each of the x-y slice each of GT data y(l) of the test sub-dataset were generated, exemplarily
shown in Figure 7. Metric results are evaluated only within the volumes enclosed by the generated
masks.

Figure 7: Particular slices along the z-axis of the example three-dimensional data from the test dataset (upper
row) w\o and (bottom row) w\ rectangular binary masks. The yellow rectangular area correspond to
the value of one, the area outside of yellow rectangular is zero.

3.4 Results

3.4.1 Training dataset preparation

The same image from the datasets is shown in Figure 8 with the same resulting GT magnitude
image |y(i)\ a phase obtained with the Walsh reconstruction algorithm and completely simulated
phase portraits are depicted in the bottom row. With the Gaussian noise N (0, 02) in both real
and imaginary channels the \a:(i)] has a noise following the Rayleigh distribution with the variance

of (2 — ;T) o2 and mean of a\/j.
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Figure 8: (left) GT y(i) and (right) inputs z@ of (top) magnitudes and (bottom) argument angle of complex-
valued data.

3.4.2 Super-resolution and denoising problem

For each of input data 2@ of test sub-dataset, predictions gj(i) with each of 5 trained models were
made. The test sub-dataset was selected from the same dataset as the training sub-dataset used for
evaluated model. Then, the image quality metrics were evaluated on pairs of models predictions
g}(i) and GT data y(i).

zero-pad Model RCAN¢ Model RCAN¢
baseline L, prediction § L. prediction g Ground Truth y
1.0
- 0.5
0.0
1
E/ 0
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— i \ \ \ 1\
&A% ‘ 0
S , N, -
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Figure 9: Exemplarily selected z-y slice of data Dyaisn with baseline zero-pad reconstruction, predictions of
RCAN¢ models trained with different loss functions and corresponding GT. Areas with image artifacts
present in the RCAN¢ models predictions but absent in the GT are highlighted with red circles.
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In Figure 9 a single z-y slice of the RCAN¢ model trained on the train sub-dataset of Dyyqsp With
two loss functions is shown, as well as the zero-pad baseline and corresponding GT. While both of
the RCAN¢ models trained with £,, and L. are capable to solve denoising and super-resolution
problems, they both produce hole-like artifacts in the predictions.

The z-y slice corresponding to that shown in Figure 9, was taken from Dg;,, and evaluated using
the RCAN¢ model trained on Dg;yy,, with the resulting predictions shown in Figure 10.

zero-pad Model RCAN¢ Model RCAN¢
baseline L, prediction § L. prediction g Ground Truth y
1.0
- 0.5
0.0
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7| | . { \ 0
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& ¢ 0
\$,
o \—_ = S — ——
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Figure 10: Exemplarily selected z-y slice of data Dsim with baseline zero-pad reconstruction, predictions of
RCAN¢ models trained with different loss functions and corresponding GT. Clearly visible is a wrong
reconstruction of real and imaganery parts for prediction of RCAN¢ model trained with L, loss
function.

Models trained on the Dy;,, are capable to predict denoised magnitudes images of increased
resolution, without producing visible artifacts. However, the RCAN¢ model trained with the £,,
loss function has a clear disagreement with GT in reconstruction of individual real and imaginary
components.

In order to check whether the observed reconstruction quality, demonstrated in Figures 9 and
10, is similar across all elements of the test sub-dataset, boxplots of the metric scores for each pair
of model prediction and GT (5, 2%)) were generated.
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Figure 11: SSIM metric for (top) channels and (bottom) applied on test sub-dataset elements of each of DL
model. Higher scores are better scores.
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Figure 13: PSNR metric for (top) channels and (bottom) applied on test sub-dataset elements of each of DL
model. Lower scores are better scores.

In Figures 11, 12 and 13 similar performance results, previously seen in Figures 9 and 10, are
observed. While the RCAN¢ model trained on the Dg;,,, with loss function £,, achieves high metric
scores for the resulting magnitude images, the model is not able to maintain high quality scores for
individual channels. This is especially strong indicated by MSE metric in Figure 13.

Considering the median value of metrics scores and the width of Q1 and Q3 quantiles, the model
RCANC¢ trained on the Dg;,, with loss function £, is capable to be used for denoising and super-
resolution. However, the model is outperformed by the magnitude model RCANpR in the magnitude
reconstruction problem by approx. 1.5% in the median scores for SSIM and PSNR metrics, with
the largest performance observed in MSE metric at 11.2 %.

3.5 Discussion

In this Chapter, the DL, model RCAN-like architecture, originally proposed for reconstruction of
magnitudes images [24], was proven capable to be adapted for the reconstruction of complex-valued
data represented as two channels and deliver feasible solutions for denoising and super-resolution
problems.

Moreover, strong dependence of the DL model performance on the loss function, as well as the
input data was observed. While the complex-valued DL model RCAN¢ trained with L. loss function
on the dataset of complex-valued data with simulated phase component was able to reconstruct
both individual channels and magnitudes of the image, the same model configuration introduced

hole-like artifacts, when was trained on the dataset of complex-valued data reconstructed with
Walsh algorithm CSMs.
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Across of the 4 different proposed complex-valued model configurations, only single model con-
figuration, namely the model trained on the Dg;,,, with loss-function L., was able to simultaneously
produce consistent results and high image quality metrics scores for both individual channel and
magnitudes.

Nevertheless, the complex-valued model did not outperform the magnitude model in the mag-
nitude reconstruction task. Superior performance of the magnitude model can be attributed to
use of the loss function £, which explicitly sets the training objective to minimise the magnitude
difference. While the loss function L., used for the complex-valued model, prioritises minimisation
of the difference of individual channels.

zero-pad
baseline RCANr RCAN¢
median SSIM, magnitude, in % 68.92 90.29 89.33
median PSNR, magnitude, in dB 28.84 33.42 32.97
median MSE, magnitude 1003 349 388

Table 3.1: Better results for each metric are bold.

Although the magnitude based model RCANyg slightly outperformed the complex-valued model
RCANC( in scores for SSIM and PSNR, the differences amount to approx. 1.5 %, with the largest
difference in the MSE metric, where the RCANg model has an advantage of approx. 11.2 %.



4 Physics-informed reconstruction model

4.1 Introduction

In the previous Chapter, the complex-valued Deep-Learning (DL) model and the complex-valued
dataset were prepared. The complex-valued DL model of Residual Channel Attention Network
(RCAN) architecture has proven its capability for the denoising and super-resolution tasks, achiev-
ing high scores across performance metrics for individual complex imaginary and real components as
well as for resulting magnitude images. Although the conventional magnitudes based model slightly
outperformed the complex-valued model in metrics scores, the differences of Structural Similarity
Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) median values were below than
1.5 %, with the largest difference in the median score of Mean-Squared Error (MSE) metric, where
the magnitude model has an advantage of approximately 11.2 %.

DL reconstruction models, however, can struggle with input data, which lays outside of the
training data domain [52]. This is a particularly relevant for the case of application of the DL
model on a real-world Ultra-Low-Field (ULF) Magnetic Resonance Imaging (MRI) acquisition,
while the DL model was trained on simulated data.

By incorporating knowledge of the MRI acquisition model into the reconstruction model, the
Physics-Informed Neural Network (PINN) can become increase consistency level with the input
and deliver better reconstruction quality compared to the reconstruction made by the individual
results of DL model or classical reconstruction model [53-56].

In the following Chapter, previously developed complex-valued RCAN¢ model is extended with
the underlying physics model of MRI acquisition process. Two distinct approaches of physics-
informed reconstruction are proposed. In first approach, predictions of DL model are used as a
regularisation term in the inverse reconstruction problem. The second approach employs an End-to-
End (E2E) training procedure, in which the model training objective is explicitly set to solve the
physically-informed inverse reconstruction problem. Then, performance of the physics-informed
model is evaluated and compared with that of the purely DL models, previously developed in
Chapter 3.

In addition, the performance of the physics-informed and purely DL models is evaluated in the
context of accelerated measurements, where the model inputs correspond to in k-space undersam-
pled data. Different strategies for sampling of k-space are examined and performance of models for
different degrees of k-space sampling are evaluated.

25
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4.2 Methods

4.2.1 Regularisation problem for the acquisition model operator

With general Equation 2.22 we now define the acquisition operator A as follows
A CPY*T 5 caxvxmt = DF, (4.1)

with F : C#*Y** — C**Y** being Fast Fourier Transform (FFT) operator and D : C**¥** —
CH*¥X*l heing a sampling operator matching the k-space data over the same k-space sampling
trajectory as mF.

Now, Equation 2.26 can be reformulated using prediction of the deep-learning model w, for
measured input m” as the regularisation term R(w):

(1 2 A
ug :argmln{HAumkH +||uur||§} (4.2)
u 2 2 2
The formal solution for w derived in Equation 2.29 yields
(AT A+ \Du = ATm* + \u, (4.3)
The equivalent representation of the sampling operator D is the element-wise product (Hadamard
product) with a tensor M;;;, of zeros and ones, being a binary mask for the values on the three-

dimensional Cartesian grid in the k-space. The tensor entries take the value one for sampled data
points and zero for non-sampled points of measurement m*. The operator D is self-adjoint

D =DH (4.4)
and, since the tensor elements M;;; are only zeros and ones, is idempotent, more precisely:

MijkE{O’l}

D"a = (Mijk)naijk Ml-jkaijk = Da,Vn € N (45)

With the acquisition operator A = DF, the formal solution for u in Equation 4.3 is equivalent to
(DF)!DF + \u = (DF)?m* + \u,, (4.6)

and has a closed-form solution. With the properties of the operator D proven earlier, the left- and
right-hand sides of Equation 4.6 are equivalent to

(FIDYDF + \D)u "2 (FUD?’F + ADu Y (FIDF + \T)u W
FEDHmMF + \u, (@4 FEDmF 4+ \u,
yielding the following Equation:
(FEIDF 4+ A\Iu = FIDm* + \u, (4.8)

Applying the operator F' from the left to both sides of Equation 4.8, the following expression in



Chapter 4. Physics-informed reconstruction model 27

k-space is derived, where u* = Fu and u¥ = Fu,. Since the operator F' is unitary (FF = I):
Duf + \Tu*F = Dm* + Mt (4.9)
Substitution of D by the Hadamard product with the binary mask tensor M yields:
kaufjk + /\ui-“jk = Mijkmf‘jk + Aufyijk (4.10)

and can be further split into two cases, depending on the value of the tensor entry M,

k k k k
Wisk + A, = Mg + Ay, for M, =1 (4.11)
Aufyy, = Mk for Mi;x =0
resulting into two-cases solution for ufjk
k k
k k jijk
u’z]k = _Wr TWE I h\ ALY for ka =1 (412)
uf”]k = uf”k for M, = 0
with the final solution for the u
u=FPuF. (4.13)

This can be intuitively understood as either taking only the model prediction value in k-space for
non-sampled value, or taking a A weighted average of the measured value mfj . and model prediction
and then apply the inverse Fourier transform operator F.

k
WUy ik

Closed-form solution for u, derived in Equations 4.12 and 4.13, can be implemented as a function:

Algorithm 3 Function DC(z, 9, \)
Require: Measurement x, Model prediction §j, Regularisation weight A > 0, Mask tensor M;;; €
{0.1)
1: function DC(z, 7, \)
2.z « FFT(x)
3 §F « FFT())
4: for all ¢, 5,k do

5: uk < M
ijk Mijk + A

6: end for

7. u< IFFT(uf)

8: return u

9: end function

4.2.2 End-to-end training

Training scheme, used in Chapter 3, set the minimisation of difference between the DL model pre-
diction and Ground Truth (GT). With E2E learning, the complete inverse reconstruction problem
from Equation 4.2 is being set as the training objective for the DL model. This enforces the DL
prediction to be consistent with the physical acquisition model of ULF MRI.

The E2E learning scheme is very similar to the supervised learning algorithm shown in Algo-
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rithm 1, but has an additional intermediate data-consistency step based on the function DC' from
Algorithm 3:

Algorithm 4 End-to-End (E2E) supervised learning algorithm for an ANN

Require: Model M, Loss function £, Training data D = {(2,y®)}Y |, Parameters state w,
Batch size B, Learning rate 1, Number of epochs E, Data-consistency function DC
1: for epoch = 1 to F do
2: for each training batch {(z™,y™)}E_, € D do

3: Forward pass: Compute predictions {gNEB_ o M({2 ™} w)
4: Data consistency: {§ ™ :— DC(z™, 4™ \)}B_,
B
5: Compute loss: L :— ZE(Q/(”),y("))
n
6 Backward pass: Compute gradients V,,L
7 Update parameters: w < w —7n-V,L
8 end for
9: end for

The algorithm for prediction of E2E trained model slightly differs from one for the simple supervised
learning (Algorithm 2), as it includes an additional data-consistency step using the same function
DC', used during E2E training:

Algorithm 5 End-to-End (E2E) supervised learned model prediction
Require: Model M, Parameters state w, Regularisation data-consistency function DC
1: Input: 2™
2: Predict: 5 i— M (z";w)
3: Data consistency: § () :(— DC(J:(i),y(i)7)\)
4: return gj/(i)

With an assumption that the DL model prediction for the physics-informed reconstruction prob-
lem is similar to the prediction without data-consistency term, the parameters state w of the DL
model M, trained without data-consistency step, can be used as an initial state for the E2E. This
technique is widely used in DL model training to reduce the duration of training and known as
transfer learning.

4.3 Experiments

The complex-valued DL model RCAN¢ configuration with loss function L., earlier proposed in
Chapter 3, is used for the experiments. All trainings are performed on the train sub-dataset of the
Dsim dataset. Optimisation parameters, such as learning rate, batch size and optimiser, remain
unchanged to those used in Chapter 3.

The state of DL model parameter w, trained with supervised learning (Algorithm 1) for 120
epochs, is used as the initial state of the DL model trained for additional 60 epochs of E2E training
(Algorithm 4).
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4.3.1 Super-resolution and denoising problem

Firstly, the closed-form solutions for reconstruction problem, derived in Algorithm 3, for the simu-
lated measurements z(?) of test sub-dataset of Dsim with corresponding RCAN¢ model predictions
g}(i) are evaluated for different values of regularisation weight A € {1 x 1073, 1x 1072, 0.1, 0.3, 0.6,
1.0, 2.0, 10}. Goal of this particular experiment is to determine whether there exists a regularisa-
tion weight A that yields a solution with a higher performance score than either the reconstruction
without regularisation term or the DL model prediction alone. Furthermore, if such a regularisation
weight exists, the experiment aims to identify the value of A that maximises the performance of
the joint solution. For the performance evaluation of the solution the same SSIM, PSNR and MSE
metrics were applied, as in Chapter 3. Then, the E2E training is performed with the fixed value of
regularisation weight .

In order to differentiate, whether change in model performance originates from the E2E training
scheme or simply because of the additional training epochs, the reference DL models with the same
initial parameter state w are trained with a general supervised learning scheme (Algorithm 1) for
the same number of additional training epochs.

4.3.2 Super-resolution, denoising and undersampling problem

The DL models were trained on the partially sampled input data ™ with the k-space sampling
degree of 80 %, 60 % and 55 % with the Partial Fourier (PF) and Gaussian Sampling (GS) patterns.
For the three-dimensional Cartesian k-space these patterns can be represented as binary masks in
form of three-dimensional tensor with values of ones and zeros. The z-y slices of binary masks
tensors M, are shown in Figure 14. The slices along the z-axis are identical

80.% of Ik;—spélxce 60.% of I/<:-sp5|me 55.% of Ik;—spélxce

- - - 25
= - - - 50
- - - 75

T T T T T T T T T ]_OO
0

- - - 25

- 50
- - - 75
100

GS

0 30 60 90 1200 30 60 90 1200 30 60 90 120

Figure 14: Slices of tensors M;;; represented in the k-space for Partial Fourier (PF) and Gaussian Sampling
(GS). Shown are the z-y slices which are identical for each of the slices along the z-axis. Yellow
corresponds to value of one and white corresponds to zero. The outer region of masks is padded with
zeros to the shape of 200 x 240 px°.

Then, the output data gj(i) of the test sub-dataset was regularised with the same set of weights A
as written above to find if any intermediate value of the range would perform better for the solution
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than the output of the RCAN¢ model alone.

In total, 12 models were trained by evaluating every possible combination of the two model
variants {RCAN¢, RCANg}, the two sampling patterns {PF, GS}, and three sampling degrees
{80 %, 60 % and 55 %}. These models were trained for 120 epochs.

Then, 6 models RCAN¢ were trained E2E for 60 more epochs with a fixed regularisation weight
A. And finally, the 6 reference RCAN¢ and 6 reference RCANR models without E2E were trained
60 more epochs to get reference models with the same final number of training epochs of 180.

4.4 Results

4.4.1 Super-resolution and denoising problem

The solutions w for the reconstruction problem (Equation 4.2) were evaluated with the Algorithm 3
with a set of different values of A\ and predictions of the model RCANg. Those are exemplarily
shown in Figure 15.

zero-pad RCAN¢

baseline . . . prediction
1.0
0.5
0.0
1.0
0.5
0.0

Figure 15: Magnitudes of ”zero-pad” baseline reconstructions, as well as the solutions for the reconstruction
problem w for intermediate values of A are evaluated. With increase of the value A the noise level
reduces and image appearance becomes more similar to the prediction of the RCAN¢ model.

Then the quality performance metrics of the solutions ?j(i) and GT y(i) were evaluated. For
the analysis of the reconstruction performance, boxplot of SSIM metric is generated and shown in
Figure 16.
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Figure 16: SSIM for the fully sampled input RCAN¢ with the regularisation with different weights A. Values of
the edge cases of very small lambda and greater lambda asymptotically approach the (left) zero-pad
baseline reconstruction performance and (right) predictions of the DL model alone.

Since the performance metric scores continuously grow with the increase of regularisation weight A,
the regularisation weight A = 1, which equalises the contribution of the measurement ™ and the
DL model prediction gj(i) to the final result w, was chosen for E2E supervised training. Change of
loss function over the training epoch during the training, shown in Figure 17, indicates an increase
of loss function in case of E2E learning, which does not decline faster than the reference model
with continued training.

0.018 - —— RCAN, 120 epochs
—— RCAN¢ (120 4 60 epochs)
0.016 - RCANc+E2E (120 + 60 epOChS)
g
.5 0.014 A
k3!
=
R
2 0.012 1
o)
)
0.010 A
0.008 A —_

0 20 40 60 80 100 120 140 160 180
Training epoch

Figure 17: Change of loss function L. value throughout the training. The first loss function value of each training
session was unintentionally not recorded.
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Figure 18: SSIM metrics scores for the magnitude models RCANg trained with supervised learning of 120 and
(120 4 60) epochs. And the complex-valued model RCAN¢ trained for 120 epochs, as well as model
with E2E training and reference model with (120 4+ 60) epochs of training.

In Figure 18 the results of SSIM for the model of RCAN¢ trained with the 120 epochs of super-
vised learning (shown in Chapter 3), the RCAN¢ model with additional 60 epochs of supervised
learning and the RCAN¢+E2E model trained for additional 60 epochs of E2E supervised learning
are shown.

The RCAN¢+E2E model trained for 60 more epochs performed better than the RCAN¢ model
trained for 120 epochs. However, it was outperformed by the model RCAN¢ trained for 60 more
epochs without the E2E training scheme.

4.4.2 Super-resolution, denoising and undersampling problem
Partial Fourier sampling
The RCAN¢ and RCANg models were trained on the partially sampled inputs ™. The inputs

are sampled with the Partial Fourier (PF) sampling of 80 %, 60 % and 55 %. The predictions of the
RCAN¢ models are shown exemplarily in Figure 19.
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Figure 19: Magnitude of input |z‘”| (top row) of the fully sampled, undersampling with the PF of 80 %, 60 %
and 55 % and magnitudes of the RCAN¢ models |§*].

In Figure 20 are SSIM scores for the RCAN¢ models predictions with GT for various sampling
degrees are shown.
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Figure 20: SSIM for magnitudes metrics of the RCAN¢ prediction for the different degrees of PF sampling
trained for 120 epochs of supervised learning.

This shows the ability of RCAN¢ models to also improve the reconstruction quality in case of
partial PF sampling.

Then, the search for an optimal A\, which would improve the performance metrics results, was done
for each model of each sampling degree, in the same way as in Subsection 4.3.1.
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Figure 21: SSIM of regularised predictions RCAN¢ for PF sampling degrees of (top) 80 %, (middle) 60 % and
(bottom) 55 %.

In Figure 21 the same behaviour for the PF sampled data, as for the fully sampled data is
observed. There is a straight tendency with increase of performance metrics with increasing regu-
larisation weight A for each of the PF sampling degrees. Therefore, the E2E trained models were
trained with the constant regularisation weight A = 1.
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Figure 22: For each of PF sampling degrees three models are evaluated. The RCANc (left) trained with super-
vised learning with 120 epochs, the RCAN¢ (middle) with additional 60 epochs of supervised learning,
and (right) RCANc+E2E with additional 60 epochs of E2E supervised learning. The groups of box-
plots, from left to right, correspond to 80 %, 60 % and 55 % of PF sampling degrees.

In Figure 22 SSIM results for PF sampling of different sampling degrees are shown. For each of the
PF sampling degree of 80 %, 60 % and 55 %, the RCAN( trained with additional 60 epochs of super-
vised learning demonstrated the best performance metrics results, compared to the RCAN¢c+E2E

trained with additional 60 epochs of E2E learning.

Gaussian random sampling

The RCAN¢ and RCANg models were trained and the outputs of the models with the different
GS degrees of 80 %, 60 % and 55 %, with sampling masks shown in Figure 14. The predictions of

the RCAN¢ models are shown exemplarily in Figure 23.
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Figure 23: Magnitudes of (top row) input |z”| of the fully sampled, partially sampled by 80 %, 60 % and 55 %
with the GS and magnitudes of (bottom row) the RCAN¢ models |§*|.
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Figure 24: SSIM for magnitudes metrics of the RCAN¢ prediction for the different degrees of GS trained for 120

epochs of supervised learning.

Then, the search of an optimal A, improving the performance metrics results, was done for each
model of each undersampling degree, in the same way as done for PF sampling.
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Figure 25: SSIM of regularised predictions RCAN¢ for GS degrees of (top) 80 %, (middle) 60 % and (bottom)
55%.

For the GS partially sampled data the same behaviour of the metrics for regularisation in respect
to A is observed. The performance metrics are increasing with increasing value of regularisation
weight \ for all sampling degrees. Therefore, for the E2E the constant regularisation weight A = 1
is selected, which equalises contributions of the measurement m” and the model prediction u,..
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Figure 26: For each of GS degrees three models are evaluated. The RCANc¢ (left) trained with supervised
learning with 120 epochs, the RCAN¢ (middle) with additional 60 epochs of supervised learning, and
(right) RCANc+E2E with additional 60 epochs of E2E supervised learning. The groups of boxplots,
from left to right, correspond to 80 %, 60 % and 55 % of GS degrees.

In Figure 26 SSIM results for GS of different sampling degrees are shown. For each of the
GS degree of 80%, 60 % and 55 %, the RCAN¢ trained with additional 60 epochs of supervised
learning demonstrated the best performance metrics scores, compared to the RCANc+E2E trained
with additional 60 epochs with E2E. In contrary with the fully sampled and PF undersampling
acquisitions, the RCANc+E2E model performance degraded in comparison with the prediction of
model RCANc.

4.5 Discussion

4.5.1 Super-resolution and denoising problem

The dependence on SSIM on the regularisation weight A, shown in Figure 16, indicates a monotonic
increase of SSIM value proportional to the value of A. Indeed, with increase of A metric scores are
increasing and approaching the score of the RCAN¢ model. For the smallest value A = 1x 1072 the
SSIM metric score converges towards the those of the “zero-pad baseline” reconstruction. These
extreme cases of large and small regularisation weight A\ are consistent with Equation 4.12, which
yields

k k
my, + /\“r,ijk ok
0 TR T (4.14)
lim ijk rigk _ uk; B
A—00 14+ A L

substituting the central k-space by the measurement data of m* for A — 0 and the model predic-
tion ufwk, for A — oo. Since the best metrics scores, that this reconstruction model can achieve,
correspond to higher A value (which is the prediction of DL model), the performance of the recon-
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struction model is not considered in the benchmarks with other proposed reconstruction models.
The absence of such an intermediate value A\, which yields a better reconstruction result than

individual terms, can be explained by the high noise level in the original measurement m*.

The RCANc+E2E model achieved slightly lower median scores for quality metrics, than the
RCAN¢ with the same number of training epochs. Moreover, the reference magnitude model
RCANpR demonstrated better median metric scores for each of metrics.

| RCANg - RCANg  RCANc+E2E

median SSIM, magnitude, in % 90.35 89.65 89.37
median PSNR, magnitude, in dB | 33.69 33.24 33.10
median MSE, magnitude 328 364 376

Table 4.1: Median metrics scores for the fully sampled input. All models are trained with (120 + 60) epochs.
Better results for each metric are bold.

This can be particularly explained by the high noise level of the input data, which is explicitly
introduced to the output of the reconstruction model in the data-consistency step.

Taking the negligible difference in the metrics scores into account, no single model can be pro-
nounced as the overall best model. Possibly, the data-consistency E2E model can provide better
reconstruction quality for the input data, which is lying outside of simulated training data domain
(e.g. in vivo measurements).

4.5.2 Super-resolution, denoising and undersampling problem

The proposed model can also be applied to the undersampling task, providing reconstructions with
high image quality metric scores. However, a decline in these scores was observed as the sampling
degree of k-space was reduced, which can be an acceptable trade-off between image quality and
measurement duration.

For the same sampling degree, the PF sampling trajectory yielded higher image quality metrics
score compared to GS, suggesting its advantage in preserving structural details under limited data
conditions. Nevertheless, none of the complex-valued models achieved better performance scores
than the magnitude-based DL model, which consistently demonstrated better reconstruction quality
across the evaluated sampling schemes.
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median SSIM, magnitude, in %
Sampling Partial Fourier Gaussian Sampling
degree, in % | RCANg | RCAN¢ | RCANc+E2E | RCANg | RCAN¢ | RCANc+E2E
80 90.06 89.43 89.11 89.76 89.02 87.93
60 89.31 88.58 88.32 88.78 88.06 87.03
55 89.04 88.17 88.01 88.54 87.81 86.81
median PSNR, magnitude, in dB
Sampling Partial Fourier Gaussian Sampling
degree, in % | RCANg | RCAN¢ | RCAN¢+E2E | RCANR | RCANe | RCANc+E2E
80 33.48 33.09 33.05 33.31 32.91 32.56
60 33.04 32.64 32.61 32.79 32.37 32.07
55 32.86 32.47 32.47 32.62 32.22 31.99
median MSE, magnitude
Sampling Partial Fourier Gaussian Sampling
degree, in % | RCANg | RCAN¢ | RCAN¢c+E2E | RCANg | RCANe | RCANc+E2E
80 345 377 381 358 393 426
60 382 419 421 404 445 477
55 398 435 435 421 461 486

Table 4.2: Results for the reconstruction of partially sampled input with Partial Fourier and Gaussian Sampling
patterns. All models are trained with (120 4+ 60) epochs. Better results for each metric within the

same sampling pattern are bold.

Given the potential bias of the employed performance metrics, coming from their high sensitivity
to noise [57] and their limited ability to capture improvements in relevant anatomical structures,

experiments with in vivo data are essential for draw of relevant conclusions about the performance
of the proposed models.



5 Application for in vivo data

5.1 Introduction

In previous Chapters 3 and 4 various reconstruction models were introduced, as purely Deep-
Learning (DL) models, as well as the DL models embedded with the physical acquisition model.
These models were trained and benchmarked on the artificial Ultra-Low-Field (ULF) Magnetic
Resonance Imaging (MRI) dataset based on the High-Field (HF) MRI acquisition. All of the pro-
posed reconstruction models, as magnitude-only DL model of Residual Channel Attention Network
(RCAN) architecture, complex-valued DL model, and physics-informed DL model demonstrated
similar scores in benchmark of image quality metrics, with a small performance gap of magnitude
model of less then 1% for Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise
Ratio (PSNR) metrics and approx. 10 % for Mean-Squared Error (MSE) metric.

However, the insignificant differences in performance among the prepared models do not allow
to identify a single best-performing reconstruction model approach. Moreover, since the training
dataset is derived from the HF MRI acquisitions of the fastMRI dataset by the known physical
acquisition model and purely simulated phase component of the acquisitions, it does not necessarily
reflect all the characteristics of real-world ULF MRI acquisitions or may lack of features of a
particular ULF MRI scanner. Therefore, in this Chapter, all previously developed models are
evaluated and compared on in vivo ULF MRI acquisition data.

The in vivo data consists of two brain acquisitions obtained with the OSI> ONE [47] scanner [58].
One acquisition was performed with the 75 weighted contrast, which is the measurement type the
models were trained on. In addition, the limits of potential measurement acceleration were tested
by undersampling of the k-space by Partial Fourier (PF) and Gaussian Sampling (GS) trajectories,
as was introduced in previous Chapter. The second measurement was done with the Proton-Density
(PD) contrast and is used to verify whether the reconstruction model for 75 weighted contrast is
applicable for reconstruction of other measurement.

5.2 Methods

The in wvivo brain imaging experiments were performed at Leiden University Medical Center
(LUMC) with the Field Of View (FOV) of 210 x 200 x 240 mm? and resolution of 5 x 2 x 2mm?
made with fully sampled three-dimensional Cartesian sampling 42 x 100 x 120 px® Turbo Spin Echo
(TSE) MRI sequence [58]. With the given configuration, measurements of 75 and PD weighted
contrasts were performed.
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5.3 Experiments

Reconstruction models prepared in the previous Chapter were constructed to have an input of shape
16 x 100 x 120 px®, while acquired in vivo data consists of 42 slices 42 x 100 x 120 px>. Many of
the top and bottom slices did not contain brain structures and, therefore, could be safely removed
from the input data. For the remaining slices, a continuous sequence of 16 slices (slices 8 to 24 of
the original measurement) was selected to approximately match the anatomical structure of the
training sub-dataset.

The reconstructions 4 of the complex-valued in vivo acquisitions mP” were reconstructed with an

inverse Fourier transform F~' and intensities were scaled to have one as maximal value.
FlmkF

w= max (| F~1mkF|) (5-1)

The reconstruction models RCANg, RCAN¢ and RCANc+E2E, presented in Chapter 4, are con-
sidered. The reconstruction with the zero-padded k-space acts as baseline reconstruction reference
and denoted as ”zero-pad baseline”.

Often, for the benchmark of ULF MRI a paired high resolution acquisition with high Signal-to-
Noise Ratio (SNR), made with a commercial HF MRI scanner is provided as a reference. For the
two ULF MRI measurements no paired reference is provided and models reconstruction quality
is only evaluated based on the human visual perception and morphological consistency of the
reconstructions.

Alongside with the reconstruction of the fully sampled data, the reconstruction of partially
sampled data with PF and GS of 80 %, 60 % and 55 % sampling degrees with the identical sampling
trajectories, shown in Figure 7, is performed and compared with the reconstruction results of the
fully sampled data.

Reconstruction of the PD weighted acquisition is of particular interest to estimate the applicability
of the previously trained model to data from another domain. Reconstruction of the PD weighted
acquisition is performed with the same reconstruction models, as Ty acquisition.

5.4 Results

5.4.1 Brain T2 relaxation time contrast acquisition
Super-resolution and denoising problem

Predictions of the reconstruction models for fully sampled input of shape 16 x 100 x 120 px® is
shown in Figure 27.
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zero-pad
baseline RCANR RCAN¢ RCANc+E2E

1.0

0.0

Figure 27: Predictions of reconstruction models for fully sampled 7> weighted in vivo input data. Shown are
different slices of the measurements.

Two clearly visible classes of artifacts present in the in vivo acquisition. Those are a narrow
vertical stripe of higher noise corresponding to the Electromagnetic Interference (EMI) at the
specific frequency and a grid of vertical stripes explained by the misalignment of the acquisition
parameters, referenced as a "zebra-like” pattern [58].

zero-pad

baseline RCANg RCAN¢ RCAN¢+E2E 0
1.
0.5
0.0
1.0
0.5
0.0

Figure 28: (top) T weighted in vivo outputs with (bottom) insets of red rectangles. The region with pronounced
EMI caused vertical stripe artifact is marked with aqua rectangle.
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All reconstruction models were able to reconstruct the input image with the similar overall
quality reducing the noise and increasing the fine structure resolution. While the vertical stripe
artifact, highlighted with aqua-coloured rectangle in Figure 28, is present in the zero-pad baseline
and RCANp reconstructions, this is missing in RCAN¢ and RCAN¢+End-to-End (E2E).

Taking a look into the complex representation of in vivo data and predictions of the complex-
valued models, shown in Figure 29.

zero-pad

baseline RCANc RCANc¢+E2E

—-1.0
1.0
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o
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—-1.0

Figure 29: Prediction of complex-valued reconstruction models for T» weighted in vivo measurement.

While the stripe artifact is clearly visible in the magnitudes domain, this much less deviates
from the noise background in the complex-valued domain. An explanation of an absence of such
artificial in the outputs of the RCAN¢ based models can be the benefit a complex-valued repre-
sentation and complex-valued model to dedifferentiate between noise and brain structures. The
RCANc+E2E, however, has more pronounced "zebra-like” stripes artifacts on the periphery region
of head compared with RCANc.

Super-resolution, denoising and undersampling problem

The fully sampled in vivo measurement is further artificially undersampled by the PF and GS
k-space patterns, in Figures 30 and 31, respectively. The undersampled input data then evaluated
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with the reconstruction models trained on the data with matching sampling degree and sampling
patterns.

zero-pad
baseline RCANR RCAN¢ RCANc+E2E

PF 60 % PF 80 %

PF 55%

0.0

Figure 30: Slices of T» weighted in vivo acquisition for 80 %, 60 % and 55 % sampling degree with Partial Fourier
(PF) pattern. Morphological changes are visible in the region enclosed by red rectangles with decrease
of k-space sampling degree.



Chapter 5. Application for in vivo data 46

zero-pad
baseline RCANR RCAN¢ RCANc+E2E

GS 60 % GS 80 %
SO

GS 55 %

0.0
Figure 31: Slices of T> weighted in wvivo acquisition for 80 %, 60 % and 55 % sampling degree with Gaussian

Sampling (GS) pattern. Morphological changes are visible in the region enclosed by red rectangles
with decrease of k-space sampling degree.

With reduction of sampling degrees for both PF and GS inconsistent changes in morphological
structures are visible. The reconstruction models tend to joint the morphological structures.

5.4.2 Brain proton density contrast acquisition

The fully sampled PD weighted acquisitions were evaluated with the RCANg, RCAN¢ and RCANc+E2E
reconstruction models, which were trained on T5 weighted contrasts of fully sampled data.
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zero-pad
baseline RCANR

0.0

Figure 32: Predictions of reconstruction models for fully sampled PD weighted in vivo data. Shown are different
slices of the measurements. Regions with vertical stripes noise artifacts are highlighted with red
rectangles.

The previously observed behaviour in Tb weighted measurements shows that complex-valued DL
models can more efficiently suppress noise, as demonstrated in the specific case of an artifact in
the form of a vertical stripe with a higher noise level.

5.5 Discussion

In this chapter, previously introduced DL models trained with the artificially created ULF MRI
dataset, composed from the fastMRI dataset of HF MRI acquisitions, were applied to the recon-
struction problem of in vivo data, acquired with the prototype of OSI> ONE MRI scanner.

All of the considered models, RCANR and RCANg, are able to deliver a morphologically consis-
tent reconstruction, successfully solving both super-resolution and denoising problems for the fully
sampled T5 weighted contrast acquisitions.

The in vivo measurements exhibited two types of acquisition artifacts. The first was caused by
a misalignment of the acquisition settings, resulting in a “zebra-like” vertical stripe patter. The
second originated from the Electromagnetic Interference with a narrow frequency band, yielding
a single vertical stripe with a higher noise amplitude. Such distortions of the image were not
included in the acquisition model and, therefore, were not present in the train sub-dataset on
which the models were trained.

The magnitude-only model RCANR is able to reduce the noise and increase the resolution, while
the both acquisition artifacts described above were still present in the prediction of the model.
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The complex-valued model RCAN¢ is able to not only reduce the noise and increase the res-
olution of the resulting magnitude, but also provide a consistent complex-valued reconstruction
of reduced noise and increased resolution. Moreover, the complex-valued model also eliminated
the vertical stripe of higher noise amplitude and mitigated the ”zebra-like” vertical stripes pattern,
without elimination of the relevant brain structure compared to the magnitude-only model RCANg.
This feature can be explained by the additional information provided with the real and imaginary
components of the data and ability of the DL model to utilise the complex-valued data for better
recognition and differentiation of relevant signal and noise.

However, no significant advantages of the use of the physics-informed model RCAN¢+E2E in
comparison with the RCAN¢ model could have been observed. In contrast, the explicit introduction
of data-consistency term made the ”zebra-like” stripe pattern artifact more pronounced in the
reconstruction result, compared to the predicition of RCAN¢ model alone.

For the reconstruction problem with partially sampled input data, all of the models demonstrated
severe morphological distortions with decrease of sampling degree for both of PF and GS sampling
trajectories.

In conclusion, the applicability of the models trained on the simulated dataset of T weighted
contrast acquisitions, could have been verified for the in vivo data of PD weighted contrast, showing
the stability of the proposed models in respect to the input data.



6 Conclusion and Outlook

In this thesis, various Deep-Learning (DL) reconstruction models, including one with physics-
informed model, were developed and verified for application for noise reduction (denoising) and
resolution enhancement (super-resolution) tasks for acquisitions of Ultra-Low-Field (ULF) Magnetic
Resonance Imaging (MRI) scanner. Originally proposed only for the magnitudes, the DL model
was adapted to process the complex-valued acquisition data and demonstrated its capability to
perform reconstruction not only for the magnitudes images, but for the complex-valued data as
well.

In Chapter 3, two complex-valued datasets that emulate ULF acquisitions were derived from the
public dataset of High-Field (HF) MRI T, weighted contrast brain acquisitions, one reconstructed
directly from the acquired multi-coil data using the Coil Sensitivity Map (CSM) retrivial algorithms,
and other with the simulated phase information. Despite the fact that the dataset, derived with the
estimated CSM, yielded an identical magnitude signal as the dataset of simulated phase information,
the first dataset was found unsuitable for further experiments due to the introduction of image
artifacts in reconstruction, which are not naturally feasible for an ULF MRI scanner.

Then, based on the dataset of simulated phase information, the complex-valued DL model and
magnitudes DL model based on Residual Channel Attention Network (RCAN) architecture, rep-
resenting a slightly modified version of the model published in [24], were introduced and trained.
Both the complex-valued and magnitudes DL models were capable to reduce the noise level and in-
crease the resolution of the low-resolution input image. The proposed models were able to achieve
high metrics scores in Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio
(PSNR) and Mean-Squared Error (MSE) image quality metrics across the test sub-dataset and
also significantly reduce the width of Q1 and Q3 quantiles in metrics score distributions, compared
to the baseline zero-pad reconstruction, achieved by the inverse Fourier transform of the acquired
k-space padded with zeros.

So, the proposed reconstruction models increased the SSIM median score from approx. 69 % up
to 90 %, the PSNR median score from approx. 29dB up to 33dB, and reduced the median MSE
by factor of 2.8. The complex-valued DL model was also able to provide denoised and super-
resolved data for imaginary and real components, what is not possible with the application of the
magnitude-based DL model.

In Chapter 4, the complex-valued DL model was extended with the physical acquisition model and
compared with the performance of two models introduced in Chapter 3 for denoising and super-
resolution problems. The physics-informed DL model delivered similar results compared to the two
DL physics-uninformed models.

Furthermore, the undersampling in k-space was added to the denoising and super-resolution
problems. Partial sampling of Partial Fourier (PF) and Gaussian Sampling (GS) k-space sapling
patterns with 80 %, 60% and 55% sampling degree were considered. For the same degree of
sampling, the PF sampling pattern yields better scores for all evaluated image quality metrics.

Finally, in Chapter 5, the previously prepared models were applied on real-world ULF MRI in
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vivo measurements [58] of 75 and Proton-Density (PD) weighted contrasts. For the T weighted
measurements all proposed DL models, trained on the dataset derived from the HF MRI acquisition,
were able to reconstruct the in vivo acquisitions. Moreover, the complex-valued based DL models
were able to utilise an additional information of the complex-valued input data to mitigate with
the Electromagnetic Interference (EMI) artifact present in the in vivo data, while the magnitude
DL model left the artifact region unaffected. The physics-informed DL model, proposed in the
present thesis, could not demonstrate advantage in the reconstruction of the data compared to the
complex-valued physics-uninformed DL model.

The proposed reconstruction models were applied to the partially sampled measurement, derived
from the fully sampled in vivo measurement, indicated significant changes in morphological struc-
tures for partially sampled measurements. With reduction of sampling degree, all of the proposed
models tend to join the close-lying structures, which were clearly separated from each other in
reconstruction of the fully sampled acquisition.

Despite the fact that no advantages of the particular physics-informed deep-learning approach
could have been demonstrated in this thesis, the development of a complex-valued dataset and
deep-learning model established a framework for further experiments in this regard. With the
high-resolution and denoised prediction of the complex-valued data by the deep-learning model,
better estimation of By field inhomogeneities can possibly be performed, which is crucial for the
ULF MRI system [28]. Alternative sampling patterns as high time-efficient spiral- or radiant-like
k-space sampling trajectories, as well as alternative architectures for deep-learning models can be
considered, such as, for example, Denoising Diffusion Probabilistic Models (DDPMs) [59, 60], which
are widely used for the inverse problems [61] and particularly for MRI reconstruction problem [62].
Moreover, other physics-informed reconstruction algorithms, which have already demonstrated bet-
ter reconstruction results for DDPMs [63-65], can be challenged for the reconstruction problem of
ULF MRI.
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